RA-4

Determination of natural radioactivity and estimation of radiation hazard in cultivated soil samples in El-Minia governorate (Upper Egypt)

Abdel rahman Ahmed¹, Amer Mohamed¹, Mona Moustafa¹, Lamiaa Yehia¹

Abstract

Natural radioactivity is a source of continuous exposure to human beings. It originates from both extraterrestrial sources and radioactive elements in the earth crust. Assessment of radioactive elements in the study area is very important from different point of view especially for human health. The natural radioactivity of soil samples were measured by Gamma spectrometry using 3″×3″ NaI (Tl) well detector. Cultivated soil samples were collected from eight regions in El-Minia governorate including; Maghagha, BaniMazar, Mattay, Samallot, El-Minya, Abo Qurqas, Mallawy, and Deir Mawas district. The activity concentration ranged from 12.43±0.62 Bq.kg⁻¹ to 30.15±1.51 Bq.kg⁻¹ with average 20.58±1.04 Bq.kg⁻¹ for ²²⁶Ra, 7.27±0.35 Bq.kg⁻¹ to 25.74±1.28 Bq.kg⁻¹ with average 14.37±0.75 Bq.kg⁻¹ for ²³²Th and 149.24±7.45 Bq.kg⁻¹ to 270.94±13.59 Bq.kg⁻¹ with average 210.20±10.55 Bq.kg⁻¹ for ⁴⁰K. The measured values are comparable with other worldwide radioactivity and are within the range specified by UNSCEAR 2000. Also radiological hazard indices were evaluated. All hazard indices are below the permissible limit. Therefore, the radiation hazard and cancer risk are insignificant in the investigated area.

Keywords: activity concentration, radiological hazard, cultivated soil and γ-spectroscopy

¹ Faculty of sciences, physics department, El-Minya university, El-Minya, Egypt.
1. Introduction

Natural radioactivity is a main source of continuous exposure to humans where natural sources still contribute almost 80% of the collective radiation exposure of the world’s population [1]. Human beings are exposed to ionizing radiation from natural sources throughout their lifetime, and sometime from man-made sources [2]. The two significant natural sources of external radiation to which human are exposed are cosmic rays and terrestrial gamma rays. Terrestrial gamma rays are essentially due to radionuclides belonging to uranium-238 (\(^{238}\text{U}\)) and thorium-232 (\(^{232}\text{Th}\)) series and singly occurring potassium-40 (\(^{40}\text{K}\)) that are present in the earth’s crust [3]. Artificial radionuclides can also be present like Caesium-137 (\(^{137}\text{Cs}\)) is a fission product which is formed through nuclear weapon tests and nuclear power plant accidents [4]. Distributions of \(^{238}\text{U}, \ 226\text{Ra}, \ 232\text{Th}\) and \(^{40}\text{K}\) in soils depend on the radionuclide distribution in rocks from which they originate and on the processes through which the soils are concentrated [5]. The high natural radiation levels commonly are associated with igneous rocks, such as granite, and lower levels commonly with sedimentary rocks [6]. Soil is the most important source of terrestrial gamma radiation levels, containing trace quantities of terrestrial radionuclides, whose concentrations depend on the local geology of each region in the world [7, 8]. Measurement of natural radioactivity in rocks and soils is vital in determining and monitoring the amount of change of the natural background activity with time for environmental protection [9]. The aim of this work is to estimate the activity concentrations of naturally occurring radionuclides \(^{226}\text{Ra}, \ 232\text{Th}\), and \(^{40}\text{K}\) in different soils and to determine the radiation hazard of these soil samples.

2. Materials and methods

2.1. Study area

The present study covered El-Minia governorate about 139 km, from Deir Mawas, in the south (38° 37′ 34″ N ; 30° 98′ 03″ E) to Maghagha, in the north (38° 28′ 39″ N ; 30° 83′ 32″ E) including eight regions: Deir Mawas (11 samples), Mallawy (11 samples), Abu-Qurqas (19 samples), Minya (9 samples), Samallot (10 samples), Matay (10 samples), Bani Mazar (10 samples), and Maghagha (9 samples). El-Minia governorate is one of the important agricultural and industrial regions in Upper Egypt. El-Minia is mainly an agricultural governorate, as it has 35000 acres distributed in centers of governorate where the highest in Mallawy, Samallot, and Bani Mazar and lowest in El-Edwa and Deir Mawas. El-Minia governorate is famous for cultivation of wheat, corn, sugar cane, sugar beets. In addition to several industrial activities including paking and freezing vegetables,
Fish farming, also there is cement factory in Samalott, and sugar factory in Abo-Quraqas. Fig (1) shows the locations map of the studied area.

2.2. Sampling collection and preparation

A total of 89 soil samples were collected from El-Minia governorate, extended from Deir Mawas city to Maghagha city. Samples have been collected at depth 30 cm from the bottom of soil because the natural terrestrial radiation originates predominantly from the upper layer 30 cm of the soil only. After collection, samples were dried in oven at 110°C for 48 hours to ensure that moisture is completely removed. The samples were crushed, homogenized, and sieved through a 200µm mesh, which is the optimum size enriched of higher heavy minerals content [10].

About 150 gram of each sample were collected in tight plastic containers of 8 cm diameter and 5 cm height. The containers were closed by screw caps and plastic tape was wrapped over the caps[10]. Finally soil samples were sealed for 4 weak to reach secular equilibrium when the rate of decay of the daughters becomes equal to that of the parent [11,12].

2.3. Gamma spectrometric analysis

Under the assumption that secular equilibrium was reached between 226Ra and 232Th with their decay products, the activity concentration of 226Ra was determined from the average concentration of 214Pb (352 keV) and 214Bi (609,1120 and 1765 keV) and that of 232Th was determined from the average concentration of 212Pb (238 keV), 208Tl (2615 keV), and 228Ac (911 keV) in each sample under study [13]. Since 40K is directly γ-emitter, so its activity concentration could be determined from its single photopeak at 1460 keV.

The activity concentration has been determined by using gamma ray spectrometer which consists of 3'×3' NaI(Tl) scintillation well detector with multichannel analyzer MCA and its electronic circuits. The detector had a photopeak efficiency of about 1.2×10^{-5} at 1332 keV for 60Co and an energy resolution of 7.5 at 662 keV for 137Cs and operation bias voltage 1000 V dc. The detector is shielded with a 6 cm lead castle that is lined inside with a Cu sheet. The measurement time of activity was 43200 s. the measured γ-ray spectrum were analyzed by software program Maestro 32. 60Co source (1173.2 and 1332.5 KeV) and 137Cs source (662 KeV) are used for energy calibration.
The efficiency calibration was performed using standard source sample which contain a known activity of one or more gamma ray emitters of the radionuclides 226Ra (351.99, 609.32, and 1764.51 KeV) and 232Th (238.63 KeV).

The efficiency calibration curve was made using different energy peaks covering the range up to \approx 2000 kev and fig(2) shows that Experimental and theoretical efficiency curves for 3" x 3" NaI(Tl) well detector. Eq(1) is used for calculating the absolute efficiency[11].

$$\eta_{Exp} = \frac{N_p \cdot 100}{I_{\gamma} \cdot TOC \cdot A_{BOC}} \quad \text{Eq(1)}$$

Where

N_p is the net peak area (Count/S), I_{γ} the intensity of emitted γ-ray (%), TOC the time of counting (s), and A_{BOC} the activity (Bq) of the standard source.

3. Results and Discussion

3.1. Activity analysis

By using gamma-ray spectrometer, activity concentrations of the natural radionuclides were investigated in the soil samples. The activity concentrations of the radionuclides in the measured samples were computed using the following relation [15]:

$$A = \frac{N_p}{e \times \eta \times m} \quad \text{Eq(2)}$$

Where

N_p is the count per second, e is abundance of the γ- peak in a radionuclide, η is the measured efficiency for each gamma-ray peak observed for the same number of channels either for the sample or standard source, and m is sample mass in kilograms. The three most important primordial radionuclides investigated in the area of interest were 226Ra, 232Th and 40K [16].

The activity concentrations of 226Ra, 232Th and 40K radionuclides in soil samples are presented in Table 1 and illustrated in Fig(3).

The activity concentration ranged from 12.43±0.62 Bq.kg$^{-1}$ to 30.15±1.51 Bq.kg$^{-1}$ with average 20.58±1.04 Bq.kg$^{-1}$ for 226Ra, 7.27±0.35 Bq.kg$^{-1}$ to 25.74±1.28 Bq.kg$^{-1}$ with
average $14.37\pm 0.75 \text{Bq.kg}^{-1}$ for ^{232}Th, and $149.24\pm 7.45 \text{ Bq.kg}^{-1}$ to 270.94 ± 13.59 with average $210.20\pm 10.55 \text{ Bq.kg}^{-1}$ for ^{40}K.

The obtained results were compared with other studies in Egypt and some other countries as listed in table (2). The overall results show that the activity concentration of ^{226}Ra, ^{232}Th and ^{40}K are not uniformly distributed in soil. The variations of the activity concentration depends on the geochemical nature of the soil, the obtained mean values of the activity concentrations are lower than the recommended value of the world average (30 Bq.kg^{-1} for ^{226}Ra, 35 Bq.kg^{-1} for ^{232}Th, and 370 Bq.kg^{-1} for ^{40}K). It is also observed that the measured activity concentration of ^{40}K exceeds markedly the values of both Uranium and Thorium, as it is the most abundant radioactive element under consideration. Moreover the excessive use of the Potassium containing fertilizers in the area adjacent to the sampling sites may contribute to the higher values of ^{40}K activity [17].

3.2. The radiological hazards:

Radiation hazard due to specified radionuclide ^{226}Ra, ^{232}Th, and ^{40}K were assessed by different indices according to UNSCEAR, 2000 to arrive at a safe conclusion on the health status of an exposed person or environment. The most widely used radiation indices are presented in table 3.

3.2.1. The Radium Equivalent Activity (Raeq):

The Raeq index represents a weighted sum of activities of the above mentioned natural radionuclides and is based on the estimation that 1 Bq·kg$^{-1}$ of ^{226}Ra, 0.7 Bq·kg$^{-1}$ of ^{232}Th, and 13 Bq·kg$^{-1}$ of ^{40}K produces the same gamma radiation dose rates. The index is given as

$$\text{Raeq} = C_{\text{Ra}} + (1.43 \ C_{\text{Th}}) + (0.077 \ C_{\text{K}}) \quad \text{Eq(3)}$$

Where C_{Ra}, C_{Th} and C_{K} are the average activity concentration in the sample in Bq·kg$^{-1}$ of ^{226}Ra, ^{232}Th, and ^{40}K respectively [18].
3.2.2. The Absorbed Dose Rate

The absorbed dose rate (Dr) in air at average gonad height of one meter above the surface of ground due to the natural radionuclides 226Ra, 232Th and 40K was estimated using the formula given as [19,20]:

$$D = 0.427 C_{Ra} + 0.662 C_{Th} + 0.0423 C_{K}$$

Eq(4)

Where

C_{Ra} is the average of the activity concentration of 226Ra in the sample, C_{Th} is the average of the activity concentration of 232Th in the sample, and C_{K} is the average of the activity concentration of 40K in the sample, in Bq kg$^{-1}$.

3.2.3. The Annual Effective Dose Equivalent (AEDE):

The annual effective dose equivalent (AEDE) to the population can be calculated using the conversion coefficient from absorbed dose in air to effective dose (0.7 Sv·Gy$^{-1}$) the indoor to outdoor ratio (1.4), the outdoor occupancy factor 0.2 and the indoor occupancy factor 0.8. Therefore, the annual effective doses outdoors and indoors equivalent are calculated by using the relations [18,21].

$$D_{\text{outdoor}} (\text{mSv}/\text{yr}) = [Dr. (\text{mGy}/\text{hr}) \times 24 \text{ hr} \times 365.25 \text{ d} \times 0.2 \times 0.7 \text{ Sv/Gy}] \times 10^{-6}$$

Eq(5)

$$D_{\text{indoor}} (\text{mSv}/\text{yr}) = [Dr. (\text{mGy}/\text{hr}) \times 24 \text{ hr} \times 365.25 \text{ d} \times 1.4 \times 0.8 \times 0.7 \text{ Sv/Gy}] \times 10^{-6}$$

Eq(6)

The corresponding worldwide values of D_{out} and D_{in} and D_{tot}are 0.08, 0.42 and 0.50 mSv·y$^{-1}$, respectively UNSCEAR 2000

3.2.4 The External and Internal Hazard Index ($H_{\text{ex}}, H_{\text{in}}$):

The external (H_{ex}) and internal (H_{in}) hazard index due to the emitted γ-rays of the soil samples were calculated and examined according to the following formula:

$$H_{\text{ex}} = \frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810} \leq 1$$

Eq(7)

$$H_{\text{in}} = \frac{C_{Ra}}{185} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810}$$

Eq(8)
The value of H_{ex} must be lower than unity in order to keep the radiation hazard insignificant. This is the radiation exposure due to the radioactivity from a construction material, limited to 1.5 mGy·y$^{-1}$. The maximum values of H_{ex} equal to unity correspond to the upper limit of Ra_{eq} (370 Bq·kg$^{-1}$) [22].

3.2.5. Representative level index ($I_{\gamma r}$)

An additional hazard index so called representative level index was calculated by using the formula [23,24]:

$$I_{\gamma r} = \frac{C_{Ra}}{150} + \frac{C_{Th}}{100} + \frac{C_{K}}{1500}$$

Eq(9)

Where C_{Ra}, C_{Th} and C_{K} are the activities of 226Ra, 232Th and 40K, respectively, in Bq kg$^{-1}$. The value of $I_{\gamma r}$ must be less than unity in order to keep the radiation hazard insignificant. As shown in table (3) the radium equivalent Ra_{eq} ranged from 34.17 to 70.93 Bq·kg$^{-1}$ with average 56.38 Bq·kg$^{-1}$. It is inferred that for all the soil samples analyzed, the radium equivalent activity value is well within and less the permissible limits of 370 Bq·kg$^{-1}$.

The absorbed dose rate (D_{γ}) ranged from 16.96 to 33.44 with average 24.96 nGy·h$^{-1}$ with average 26.75 nGy·h$^{-1}$, these values of dose rates are less than the allowed limit 59 nGy·h$^{-1}$. Radioactivity level index (I_{γ}) ranged from 0.26 to 0.51 with average 0.41. The calculated values for most samples were lower than the international values ($I_{\gamma} < 1$). External hazards (H_{ex}) ranged from 0.14 to 0.19 with average 0.15 where the calculated average values were less than the acceptable value (1.5 mGy·y$^{-1}$). The maximum values of H_{ex} equal to unity correspond to the upper limit of Ra_{eq} (370 Bq·kg$^{-1}$). The annual effective dose rate ($AEDE_{out}$) ranged from 20.58 to 41.33 µSv·y$^{-1}$ with average 31.54 µSv·y$^{-1}$ values were lower than the corresponding worldwide values of 80 µSv·y$^{-1}$.

The measured results are lower than the recommended international limits. Therefore, the study area is still in the limits of normal radiation level.

4. Conclusion:

The activity concentrations of naturally occurring radionuclides 226Ra, 232Th, and 40K in 131 soil samples from El-Minya governorate have been determined by gamma spectroscopy. The activity concentrations were found to be from 12.43±0.62 Bq·kg$^{-1}$ to
30.15±1.51 Bq.kg\(^{-1}\) with average 20.58±1.04 Bq.kg\(^{-1}\) for \(^{226}\)Ra, 7.27±0.35 Bq.kg\(^{-1}\) to 25.74±1.28 Bq.kg\(^{-1}\) with average 14.37±0.75 Bq.kg\(^{-1}\) for \(^{232}\)Th and 149.24±7.45 Bq.kg\(^{-1}\) to 270.94±13.59 Bq.kg\(^{-1}\) with average 210.20±10.55 Bq.kg\(^{-1}\) for \(^{40}\)K. The radiation hazard indices (The radium equivalent (Raeq), the absorbed dose rate (\(D_r\)), radioactivity level index (\(I_\gamma\)), external hazards (\(H_{ex}\)), and the annual effective dose rate (AEDE\(_{out}\))) are calculated. The measured results are lower than the recommended international limits.

5. References:

[29] H. A. Nursama, T. R. Ahmad, Sutisna, Activity Concentration of 238U, 232Th and 40K Based on Soil Types in Perak State, Malaysia. Earth Science Research; Vol. 2, No. 2 (2013)

Fig(1): locations map of studied samples.
Fig 2. Experimental and theoretical efficiency curves for 3\" x 3\" NaI(Tl) well detector.

Fig 3. The activity concentrations of radionuclides in soil samples collected from El-Minia Governorate.
Table 1. The activity concentrations of radionuclides in soil samples collected from El-Minia Governorate

<table>
<thead>
<tr>
<th>Samples locations</th>
<th>Number of samples</th>
<th>226Ra (Bq.kg$^{-1}$)</th>
<th>232Th (Bq.kg$^{-1}$)</th>
<th>40K (Bq.kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maghagha</td>
<td>9</td>
<td>20.67±1.14</td>
<td>15.52±0.77</td>
<td>270.94±13.59</td>
</tr>
<tr>
<td>BaniMazar</td>
<td>10</td>
<td>26.24±1.32</td>
<td>16.54±0.83</td>
<td>221.27±10.99</td>
</tr>
<tr>
<td>Matay</td>
<td>10</td>
<td>20.84±1.04</td>
<td>18.82±0.94</td>
<td>254.32±13.15</td>
</tr>
<tr>
<td>Samallot</td>
<td>10</td>
<td>30.15±1.51</td>
<td>9.33±0.46</td>
<td>179.80±8.98</td>
</tr>
<tr>
<td>El-Minya</td>
<td>9</td>
<td>21.85±1.08</td>
<td>25.74±1.28</td>
<td>218.13±10.87</td>
</tr>
<tr>
<td>Abo Qurqa</td>
<td>19</td>
<td>13.35±0.66</td>
<td>7.27±0.35</td>
<td>152.16±7.61</td>
</tr>
<tr>
<td>Mallawy</td>
<td>11</td>
<td>19.15±0.96</td>
<td>11.29±0.8</td>
<td>235.75±11.82</td>
</tr>
<tr>
<td>DeirMawas</td>
<td>11</td>
<td>12.43±0.62</td>
<td>10.5±0.53</td>
<td>149.24±7.45</td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td>12.43±0.62</td>
<td>7.27±0.35</td>
<td>149.24±7.45</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td>30.15±1.51</td>
<td>25.74±1.28</td>
<td>270.94±13.59</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>20.58±1.04</td>
<td>14.37±0.75</td>
<td>210.20±10.55</td>
</tr>
</tbody>
</table>
Table (2): comparison between activities of 226Ra, 232Th and 40K for all soil samples under present study and other countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>Note</th>
<th>Activity (Bq/kg)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>226Ra</td>
<td>232Th</td>
</tr>
<tr>
<td>Egypt (Qena)</td>
<td>Farm soil</td>
<td>13.7</td>
<td>12.3</td>
</tr>
<tr>
<td>Egypt (The Nile Delta)</td>
<td>Farm soil</td>
<td>16.6</td>
<td>18.1</td>
</tr>
<tr>
<td>and Middle Egypt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Farm soil</td>
<td>55.3</td>
<td>26.4</td>
</tr>
<tr>
<td>Palestine</td>
<td>Farm soil</td>
<td>34.5</td>
<td>23.8</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>Farm soil</td>
<td>44.87</td>
<td>54.59</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Farm soil</td>
<td>127</td>
<td>304</td>
</tr>
<tr>
<td>Turkey</td>
<td>Farm soil</td>
<td>48.35</td>
<td>20.48</td>
</tr>
<tr>
<td>Sultanate of Oman</td>
<td>Farm soil</td>
<td>14.42</td>
<td>9.95</td>
</tr>
<tr>
<td>Yemen</td>
<td>Farm soil</td>
<td>30.41</td>
<td>36.26</td>
</tr>
<tr>
<td>Brazil</td>
<td>Farm soil</td>
<td>47</td>
<td>29</td>
</tr>
<tr>
<td>UNSCEAR 2000</td>
<td>Soil</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Present work</td>
<td></td>
<td>20.58</td>
<td>14.37</td>
</tr>
</tbody>
</table>
Table 3. The radium equivalent (Ra_{eq}), the absorbed dose rate (D_r), radioactivity level index (I_{γ}), external hazards (H_{ex}), and the annual effective dose rate ($AEDE_{out}$) of the soil samples collected from El-Minia governorate.

<table>
<thead>
<tr>
<th>Samples location</th>
<th>Number of samples</th>
<th>Ra_{eq} (Bq.kg$^{-1}$)</th>
<th>D_r (n.Gy$^{-1}$)</th>
<th>I_{γ}</th>
<th>H_{ex}</th>
<th>$AEDE_{out}$ (µSv.h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maghagha</td>
<td>9</td>
<td>65.81456</td>
<td>31.4571</td>
<td>0.487657</td>
<td>0.177763</td>
<td>27.92</td>
</tr>
<tr>
<td>Bani Mazar</td>
<td>10</td>
<td>62.29549</td>
<td>29.37685</td>
<td>0.456333</td>
<td>0.168283</td>
<td>36.05</td>
</tr>
<tr>
<td>Matay</td>
<td>10</td>
<td>68.05218</td>
<td>32.50655</td>
<td>0.502843</td>
<td>0.183797</td>
<td>39.89</td>
</tr>
<tr>
<td>Samallot</td>
<td>10</td>
<td>57.36833</td>
<td>26.67033</td>
<td>0.4144</td>
<td>0.155</td>
<td>33</td>
</tr>
<tr>
<td>El-Minya</td>
<td>9</td>
<td>70.93133</td>
<td>33.44333</td>
<td>0.514667</td>
<td>0.191533</td>
<td>41.33</td>
</tr>
<tr>
<td>Abo Qurqas</td>
<td>19</td>
<td>34.1748</td>
<td>16.96141</td>
<td>0.263352</td>
<td>0.14249</td>
<td>20.58</td>
</tr>
<tr>
<td>Mallawy</td>
<td>11</td>
<td>53.47232</td>
<td>25.07725</td>
<td>0.397907</td>
<td>0.144427</td>
<td>30.77</td>
</tr>
<tr>
<td>Deir Mawas</td>
<td>11</td>
<td>38.95748</td>
<td>18.58113</td>
<td>0.287512</td>
<td>0.105219</td>
<td>22.8</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td>56.38331</td>
<td>26.75924</td>
<td>0.415584</td>
<td>0.158564</td>
<td>31.54</td>
</tr>
</tbody>
</table>